New data pushes back universe's age by 80m years
NEW results from looking at the split-second after the Big Bang indicate the universe is 80 million years older than previously thought, but core concepts in physics about the cosmos - how it began, what it's made of and where it's going - seem to be on the right track.
The findings released yesterday bolster a key theory called inflation, which says the universe burst from subatomic size to its now-observable expanse in a fraction of a second. The new observations from the European Space Agency's US$900 million Planck space probe appear to reinforce some predictions made decades ago solely on the basis of mathematical concepts.
"We've uncovered a fundamental truth of the universe," said George Efstathiou, director of the Kavli Institute for Cosmology at the University of Cambridge who announced the Planck satellite mapping result in Paris.
"There's less stuff that we don't understand by a tiny amount. It's a big pat on the back for our understanding of the universe," California Institute of Technology physicist Sean Carroll, who was not involved in the project, said.
"In terms of describing the current universe, I think we have a right to say we're on the right track."
Afterglow
The Big Bang - the most comprehensive theory of the universe's beginning - says the visible portion of the universe was smaller than an atom when, in a split second, it exploded, cooled and expanded faster than the speed of light.
The Planck space probe looked back at the afterglow of the Big Bang, and those results have now added about 80 million years to the universe's age, putting it at 13.81 billion years old.
The probe, named for the German physicist Max Planck, the originator of quantum physics, also found that the cosmos is expanding a bit slower than originally thought, has a little less of that mysterious dark energy than astronomers had figured and has a tad more normal matter.
But scientists say those are small changes in calculations about the universe, whose numbers are so massive.
Officials at NASA, which also was part of the experiment, said the Planck probe has provided a deeper understanding of the intricate history of the universe and its complex composition.
Krzysztof Gorski, a Planck scientist at NASA's Jet Propulsion Lab, said that the new results "are giving astronomers a treasure trove of spectacular data, and bringing forth a deeper understanding of the properties and history of the universe."
The Planck space telescope, launched in 2009, has spent 15 1/2 months mapping the sky, examining so-called "light" fossils and sound echoes from the Big Bang by looking at background radiation in the cosmos.
The findings released yesterday bolster a key theory called inflation, which says the universe burst from subatomic size to its now-observable expanse in a fraction of a second. The new observations from the European Space Agency's US$900 million Planck space probe appear to reinforce some predictions made decades ago solely on the basis of mathematical concepts.
"We've uncovered a fundamental truth of the universe," said George Efstathiou, director of the Kavli Institute for Cosmology at the University of Cambridge who announced the Planck satellite mapping result in Paris.
"There's less stuff that we don't understand by a tiny amount. It's a big pat on the back for our understanding of the universe," California Institute of Technology physicist Sean Carroll, who was not involved in the project, said.
"In terms of describing the current universe, I think we have a right to say we're on the right track."
Afterglow
The Big Bang - the most comprehensive theory of the universe's beginning - says the visible portion of the universe was smaller than an atom when, in a split second, it exploded, cooled and expanded faster than the speed of light.
The Planck space probe looked back at the afterglow of the Big Bang, and those results have now added about 80 million years to the universe's age, putting it at 13.81 billion years old.
The probe, named for the German physicist Max Planck, the originator of quantum physics, also found that the cosmos is expanding a bit slower than originally thought, has a little less of that mysterious dark energy than astronomers had figured and has a tad more normal matter.
But scientists say those are small changes in calculations about the universe, whose numbers are so massive.
Officials at NASA, which also was part of the experiment, said the Planck probe has provided a deeper understanding of the intricate history of the universe and its complex composition.
Krzysztof Gorski, a Planck scientist at NASA's Jet Propulsion Lab, said that the new results "are giving astronomers a treasure trove of spectacular data, and bringing forth a deeper understanding of the properties and history of the universe."
The Planck space telescope, launched in 2009, has spent 15 1/2 months mapping the sky, examining so-called "light" fossils and sound echoes from the Big Bang by looking at background radiation in the cosmos.
- About Us
- |
- Terms of Use
- |
-
RSS
- |
- Privacy Policy
- |
- Contact Us
- |
- Shanghai Call Center: 962288
- |
- Tip-off hotline: 52920043
- 娌狪CP璇侊細娌狪CP澶05050403鍙-1
- |
- 浜掕仈缃戞柊闂讳俊鎭湇鍔¤鍙瘉锛31120180004
- |
- 缃戠粶瑙嗗惉璁稿彲璇侊細0909346
- |
- 骞挎挱鐢佃鑺傜洰鍒朵綔璁稿彲璇侊細娌瓧绗354鍙
- |
- 澧炲肩數淇′笟鍔$粡钀ヨ鍙瘉锛氭勃B2-20120012
Copyright 漏 1999- Shanghai Daily. All rights reserved.Preferably viewed with Internet Explorer 8 or newer browsers.