Related News
US study puts cancer cells in a new light
A NEW imaging technique that uses tiny, dye-containing particles to "fingerprint" proteins within a single cell may lead to better ways to diagnose and treat cancer, said researchers in the United States on Tuesday.
If the technique succeeds on a larger scale, it could improve the ability not only to diagnose cancers, but to determine how aggressive a tumor is and how likely it is to respond to therapy.
"We could use it for diagnosis and maybe to help plan an appropriate treatment for a specific indication," said Cathy Shachaf, a researcher at Stanford University whose study appears in the Public Library of Science Journal PLoS One.
Shachaf said the technique was designed to give doctors a better look at the machinery inside a cell.
"Different types of cells are active in cancer," Shachaf said. "What we tried to do is develop technology to be able to look at the proteins active in a single cell ... to define and distinguish different types of cancer cells from each other."
She said current cell imaging technology used antibodies tagged with fluorescent dye to detect proteins, which light up as they flow through a beam of light.
But the images can become muddy if there are too many overlapping colors, limiting the number of proteins that can be imaged simultaneously to about 20.
Rather than simple fluorescent dyes, the Stanford team used special nanoparticle probes created by Intel Corp that give off distinct signals.
"Instead of giving us a very broad, smooth spectrum they give us sharp fingerprints," Shachaf said. Her team used the technology to detect two distinct cancer proteins simultaneously, but she said they have imaged as many as nine in the lab.
Shachaf said the team hoped eventually to be able to image as many as 100 distinct features inside a cell. "The goal of this is to outdo current technology," she said.
If the technique succeeds on a larger scale, it could improve the ability not only to diagnose cancers, but to determine how aggressive a tumor is and how likely it is to respond to therapy.
"We could use it for diagnosis and maybe to help plan an appropriate treatment for a specific indication," said Cathy Shachaf, a researcher at Stanford University whose study appears in the Public Library of Science Journal PLoS One.
Shachaf said the technique was designed to give doctors a better look at the machinery inside a cell.
"Different types of cells are active in cancer," Shachaf said. "What we tried to do is develop technology to be able to look at the proteins active in a single cell ... to define and distinguish different types of cancer cells from each other."
She said current cell imaging technology used antibodies tagged with fluorescent dye to detect proteins, which light up as they flow through a beam of light.
But the images can become muddy if there are too many overlapping colors, limiting the number of proteins that can be imaged simultaneously to about 20.
Rather than simple fluorescent dyes, the Stanford team used special nanoparticle probes created by Intel Corp that give off distinct signals.
"Instead of giving us a very broad, smooth spectrum they give us sharp fingerprints," Shachaf said. Her team used the technology to detect two distinct cancer proteins simultaneously, but she said they have imaged as many as nine in the lab.
Shachaf said the team hoped eventually to be able to image as many as 100 distinct features inside a cell. "The goal of this is to outdo current technology," she said.
- About Us
- |
- Terms of Use
- |
-
RSS
- |
- Privacy Policy
- |
- Contact Us
- |
- Shanghai Call Center: 962288
- |
- Tip-off hotline: 52920043
- 娌狪CP璇侊細娌狪CP澶05050403鍙-1
- |
- 浜掕仈缃戞柊闂讳俊鎭湇鍔¤鍙瘉锛31120180004
- |
- 缃戠粶瑙嗗惉璁稿彲璇侊細0909346
- |
- 骞挎挱鐢佃鑺傜洰鍒朵綔璁稿彲璇侊細娌瓧绗354鍙
- |
- 澧炲肩數淇′笟鍔$粡钀ヨ鍙瘉锛氭勃B2-20120012
Copyright 漏 1999- Shanghai Daily. All rights reserved.Preferably viewed with Internet Explorer 8 or newer browsers.